Introduction

- The statistics of annual traffic congestions in 2012[1]:
 + 5.5 billion hours of extra time
 + 2.9 billion gallons of wasted fuel
 + $121 billion lost in total

- Congestions caused by traffic incident
 + Incidents account for 30% ~ 50% congestions [2]
 + 1 minute an incident in place -> 4 minutes delay [3]

Motivation

- Importance of Impact Prediction in ITS
 + To avoid the congestions by smart route planning

Preliminary

- Granger Causality [4]
 + We try to predict time series Y, we have two approaches:
 \[
 Y(t) = \sum_{i=1}^{l} a_i Y(t-l) + \epsilon_1, \quad (1)
 \]
 \[
 Y(t) = \sum_{i=1}^{l} a_i Y(t-l) + \sum_{i=1}^{l} b_i X(t-l) + \epsilon_2, \quad (2)
 \]
 + If prediction accuracy of (2) is significantly better than (1), we determine that time series X Granger causes time series Y.

- Lasso – Granger
 + Provide a graphical causality modeling and to reduce the computational complexity of Granger method [6]
 \[
 \min_{a_i} \sum_{t=1}^{n} \left[X_i(t) - \sum_{j=1}^{l} a_i^j X_j(t-l_j) \right]^2 + \lambda \|a_i\|_1,
 \]
 + \(X_i \) causes series \(X_j \) if and only if \(a_i \) is a non-zero vector.

Conclusion and Future Work

- We learn the causality relationship between highways sensors and arterial sensors, and utilize that relationship to predict the impact of traffic incidents.
- We plan continue this impact study on more complex traffic related events, such as sports game or concerts.

References

